795 research outputs found

    PDE7A1 hydrolyzes cCMP

    Get PDF
    AbstractThe degradation and biological role of the cyclic pyrimidine nucleotide cCMP is largely elusive. We investigated nucleoside 3′,5′-cyclic monophosphate (cNMP) specificity of six different recombinant phosphodiesterases (PDEs) by using a highly-sensitive HPLC–MS/MS detection method. PDE7A1 was the only enzyme that hydrolyzed significant amounts of cCMP. Enzyme kinetic studies using purified GST-tagged truncated PDE7A1 revealed a cCMP KM value of 135±19μM. The Vmax for cCMP hydrolysis reached 745±27nmol/(minmg), which is about 6-fold higher than the corresponding velocity for adenosine 3′,5′-cyclic monophosphate (cAMP) degradation. In summary, PDE7A is a high-speed and low-affinity PDE for cCMP

    Ultrafine particles and platelet activation in patients with coronary heart disease – results from a prospective panel study

    Get PDF
    BACKGROUND: Epidemiological studies on health effects of air pollution have consistently shown adverse cardiovascular effects. Toxicological studies have provided evidence for thrombogenic effects of particles. A prospective panel study in a susceptible population was conducted in Erfurt, Germany, to study the effects of daily changes in ambient particles on various blood cells and soluble CD40ligand (sCD40L, also known as CD154), a marker for platelet activation that can cause increased coagulation and inflammation. Blood cells and plasma sCD40L levels were repeatedly measured in 57 male patients with coronary heart disease (CHD) during winter 2000/2001. Fixed effects linear regression models were applied, adjusting for trend, weekday and meteorological parameters. Hourly data on ultrafine particles (UFP, number concentration of particles from 0.01 to 0.1 μm), mass concentration of particles less than 10 and 2.5 μm in diameter (PM(10), PM(2.5)), accumulation mode particle counts (AP, 0.1–1.0 μm), elemental and organic carbon, gaseous pollutants and meteorological data were collected at central monitoring sites. RESULTS: An immediate increase in plasma sCD40L was found in association with UFP and AP (% change from geometric mean: 7.1; CI: [0.1, 14.5] and 6.9; CI: [0.5, 13.8], respectively). Platelet counts decreased in association with UFP showing an immediate, a three days delayed (lag 3) and a 5-day average response (% change from the mean: -1.8; CI: [-3.4,-0.2]; -2.4; CI: [-4.5,-0.3] and -2.2; CI: [-4.0,-0.3] respectively). CONCLUSION: The increased plasma sCD40L levels support the hypothesis that higher levels of ambient air pollution lead to an inflammatory response in patients with CHD thus providing a possible explanation for the observed association between air pollution and cardiovascular morbidity and mortality in susceptible parts of the population

    The Association Between Particulate Air Pollution and Respiratory Mortality in Beijing Before, During, and After the 2008 Olympic and Paralympic Games

    Get PDF
    To improve ambient air quality during the 2008 Summer Olympic and Paralympic Games, the Chinese Government and Beijing’s municipal government implemented comprehensive emission control policies in Beijing and its neighboring regions before and during this period. The goal of this study was to investigate the association between particulate air pollution and cause-specific respiratory mortality before, during and after the period of the Olympic Games. Further, we wanted to assess whether changes in pollutant concentrations were linked to changes in respiratory mortality. We obtained daily data on mortality due to respiratory diseases (coded as J00-J99 according to the International Classification of Diseases and Related Health Problems 10th revision [ICD10]) and pneumonia (ICD10: J12–18), meteorology, particulate matter less than 10 µm or 2.5 μm in diameter (PM10, PM2.5) and particle number size distribution from official monitoring networks and sites located on the Peking University campus between May 20 and December 1, 2008. We assessed the effects of particulate air pollution on daily respiratory mortality using confounder-adjusted Quasi-Poisson regression models. Furthermore, we estimated air pollution effects for three periods—before (May 20 to July 20, 2008), during (August 1 to September 20, 2008) and after (October 1 to December 1, 2008)—by including interaction terms in the models. We found associations between different particle metrics and respiratory and pneumonia mortality, with more pronounced effects in smaller particle size ranges. For example, an interquartile range increase of 7,958 particles/cm3 in ultrafine particles (particles <100 nm in diameter) led to a 16.3% (95% confidence interval 4.3%; 26.5%) increase in respiratory mortality with a delay of seven days. When investigating the sub-periods, results indicate that a reduction in air pollution during the Olympics resulted in reduced (cause-specific) respiratory mortality. This reduction was especially pronounced for pneumonia mortality. The findings suggest that even a short-term reduction in pollution concentrations may lead to health benefits and that smaller particles in the ultrafine size range may be particularly important for respiratory health

    Short-term effects of air pollution: a panel study of blood markers in patients with chronic pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing evidence indicates that ambient air pollution is associated with exacerbation of chronic diseases like chronic pulmonary disease. A prospective panel study was conducted to investigate short-term changes of blood markers of inflammation and coagulation in response to daily changes in air pollution in Erfurt, Germany. 12 clinical visits were scheduled and blood parameters were measured in 38 male patients with chronic pulmonary disease during winter 2001/2002. Additive mixed models with random patient intercept were applied, adjusting for trend, weekday, and meteorological parameters. Hourly data on ultrafine particles (UFP, 0.01-0.1 μm), accumulation mode particles (ACP, 0.1-1.0 μm), PM<sub>10 </sub>(particulate matter <10 μm in diameter), elemental (EC) and organic carbon (OC), gaseous pollutants (nitrogen monoxide [NO], nitrogen dioxide [NO<sub>2</sub>], carbon monoxide [CO], and sulphur dioxide [SO<sub>2</sub>]) were collected at a central monitoring site and meteorological data were received from an official network. For each person and visit the individual 24-hour average of pollutants immediately preceding the blood withdrawal (lag 0) up to day 5 (lag1-4) and 5-day running means were calculated.</p> <p>Results</p> <p>Increased levels of fibrinogen were observed for an increase in one interquartile range of UFP, PM<sub>10</sub>, EC, OC, CO, and NO revealing the strongest effect for lag 3. E-selectin increased in association with ACP and PM<sub>10 </sub>with a delay of one day. The ACP effect was also seen with the 5-day-mean. The pattern found for D-dimer was inconsistent. Prothrombin fragment 1+2 decreased with lag 4 consistently for all particulate pollutants. Von Willebrand factor antigen (vWF) showed a consistent decrease in association with almost all air pollutants with all lags except for lag 0. No associations were found for C-reactive protein, soluble intercellular adhesion molecule 1, serum amyloid A and factor VII.</p> <p>Conclusion</p> <p>These results suggest that elevated concentrations of air pollution are associated with changes in some blood markers of inflammation and coagulation in patients with chronic pulmonary disease. The clinical implications of these findings need further investigation.</p

    Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background and Objective</p> <p>Exposure to ambient particles has been shown to be responsible for cardiovascular effects, especially in elderly with cardiovascular disease. The study assessed the association between deceleration capacity (DC) as well as heart rate variability (HRV) and ambient particulate matter (PM) in patients with coronary artery disease (CAD).</p> <p>Methods</p> <p>A prospective study with up to 12 repeated measurements was conducted in Erfurt, Germany, between October 2000 and April 2001 in 56 patients with physician-diagnosed ischemic heart disease, stable angina pectoris or prior myocardial infarction at an age of at least 50 years. Twenty-minute ECG recordings were obtained every two weeks and 24-hour ECG recordings every four weeks. Exposure to PM (size range from 10 nm to 2.5 μm), and elemental (EC) and organic (OC) carbon was measured. Additive mixed models were used to analyze the association between PM and ECG recordings.</p> <p>Results</p> <p>The short-term recordings showed decrements in the high-frequency component of HRV as well as in RMSSD (root-mean-square of successive differences of NN intervals) in association with increments in EC and OC 0-23 hours prior to the recordings. The long-term recordings revealed decreased RMSSD and pNN50 (% of adjacent NN intervals that differed more than 50 ms) in association with EC and OC 24-47 hours prior to the recordings. In addition, highly significant effects were found for DC which decreased in association with PM<sub>2.5</sub>, EC and OC concurrent with the ECG recordings as well as with a lag of up to 47 hours.</p> <p>Conclusions</p> <p>The analysis showed significant effects of ambient particulate air pollution on DC and HRV parameters reflecting parasympathetic modulation of the heart in patients with CAD. An air pollution-related decrease in parasympathetic tone as well as impaired heart rate deceleration capacity may contribute to an increased risk for cardiac morbidity and sudden cardiac death in vulnerable populations.</p

    Охранно-пожарная сигнализация: монтаж, обслуживание, работа

    Get PDF
    Актуальность статьи связана с необходимостью противопожарной защиты в организациях и на предприятиях посредством проектирования и монтажа автоматических установок пожарной сигнализации.The relevance of the article is related to the need for fire protection in organizations and enterprises through the design and installation of automatic fire alarm systems

    Altered Cardiac Repolarization in Association with Air Pollution and Air Temperature among Myocardial Infarction Survivors

    Get PDF
    Background: Epidemiological studies have shown that ambient particulate matter (PM) and changes in air temperature are associated with increased cardiopulmonary events. Objective: We hypothesized that patients with previous myocardial infarction (MI) experience changes in heart rate (HR) and repolarization parameters, such as Bazett-corrected QT interval (QTc), and T-wave amplitude (Tamp), in association with increases in air pollution and temperature changes. Methods: Between May 2003 and February 2004, 67 MI survivors from the Augsburg KORA-MI registry repeatedly sent 16 sec electrocardiograms (ECGs) with a personal transmitter (Viapac) via telephone to the Philips Monitoring Center, where ECG parameters were immediately analyzed. Meteorological data and air pollutants were acquired from fixed monitoring sites on an hourly basis. Additive mixed models were used for analysis. Effect modification by patient characteristics was investigated. Results: The analysis of the 1,745 ECGs revealed an increased HR associated with interquartile range (IQR) increases in PM levels among participants not using beta-adrenergic receptor blockers and among those with body mass index ≥ 30 kg/m2. We observed a 24- to 47-hr lagged QTc prolongation [0.5% change (95% confidence interval, 0.0–1.0%)] in association with IQR increases in levels of PM ≤ 2.5 µm in aerodynamic diameter, especially in patients with one [0.6% (0.1–1.0%)] or two [1.2% (0.4–2.1%)] minor alleles of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) single-nucleotide polymorphism rs2364725. Positive immediate (0–23 hr) and inverse delayed (48–71 hr up to 96–119 hr) associations were evident between PM and Tamp. We detected an inverse U-shaped association between temperature and Tamp, with a maximum Tamp at 5°C. Conclusions: Increased air pollution levels and temperature changes may lead to changes in HR and repolarization parameters that may be precursors of cardiac problems.The AIRGENE study was funded as part of the European Union’s 5th Framework Programme, key action 4: “Environment and Health,” contract QLRT-2002-02236. This research has been funded wholly or in part by the U.S. Environmental Protection Agency through Science to Achieve Results grants RD827354 and RD832415 to the University of Rocheste
    corecore